Description	Translational Me-	Torsional Mechani-	Electrical	Thermal	Fluid/ Acoustic	Photometric	Economic	Magnetic
	chanical	cal						
Static (Quantity)	Position	Angle	Charge	Heat	Volume	Luminous Energy?	?	Magnetic flux
Motion (Flux)	Velocity	Angular Velocity	Current	Heat flow	Volumetric Flow	Spectral Power	?	Magnetic flux rate
Push (Potential)	Force	Torque	Voltage (potential	Temperature	Pressure	Wavelength	?	Magnetomotive
			difference or elec-					force
			tromotive force)					
Dissipative element	Friction/ Damper	Rotational Friction	Resistance	Thermal Resis-	Fluid Resistance	Photosynthesis?	Resistance to Con-	gyrator/dualizer?
				tance			sume	
Motion storage	Mass	Inertia	Inductance	1/Heat capacity	Inertance	Photonic Microres-	Apparent Capital	Magnetic Induc-
						onator?		tance?
Push storage	Spring	Torsion	Elastance (1/Ca-	1/Thermal capaci-	1/Fluid capaci-	electromagnetically-	(1/credit) or para-	Reluctance
			pacitance)	tance	tance	induced trans-	sitism?	
						parency?		
Impulse	Momentum	Angular Momen-	Magnetic Flux	?	Dynamic Viscosity	Wavespeed	?	?
		tum						

Could I include: genetics, control systems, cosmology, chemistry, law, radiometry?

NOTE: Different analogies are possible, e.g. using parallel circuits (the above is for series), or using an alternative mechanical analogy (e.g. equating Force with Current)

Push = Effort = AcrossMotion = Flow = Through

General Kirchhoff Potential Law (GPL) and General Kirchhoff Flow Law (GFL) apply

Description	Translational Me-	Torsional Mechani-	Electrical	Thermal	Fluid/ Acoustic	Photometric	Magnetic
	chanical	cal					
Static (Quantity)	m	$rad = \frac{m}{m}$	C = s.A	W.s	m^3	?	$Wb = \frac{kg.m^2}{A.s^2}$
Motion (Flux)	$\frac{m}{s}$	$\frac{rad}{s} = \frac{1}{s}$		$W = J.s = \frac{kg.m^2}{s}$	$\left \frac{m^3}{s} \right $	$\left \frac{W}{m} \right $	$\frac{Wb}{s} = V = \frac{kg.m^2}{A.s^3}$
Push (Potential)	$N = \frac{J}{m} = \frac{kg.m}{s^2}$	$N.m = \frac{J}{rad} =$	$V = \frac{kg.m^2}{A.s^3}$	K	$Pa = \frac{J}{m^3} = \frac{kg}{m.s^2}$	m	A
		$\frac{kg.m^2}{s^2}$					
Dissipative element	$\frac{N.s}{m} = \frac{kg}{s}$	$\frac{N.m.s}{rad} = \frac{kg.m^2}{s}$	$\Omega = \frac{V}{A} = \frac{kg.m^2}{A^2.s^3}$	$\frac{K}{W} =$	$\frac{kg}{m^4.s}$?	Ω?
Motion storage	kg	$kg.m^2$	$H = \frac{V.s}{A} = \frac{kg.m^2}{A^2.s^2}$	$\frac{K.s}{W} =$	$\frac{Pa.s^2}{m^3} = \frac{kg}{m^4}$?	?
Push storage	$\frac{N}{m} = \frac{kg}{s^2}$	$\frac{N.m}{rad} = \frac{kg.m^2}{s^2}$	$\frac{1}{F} = \frac{V}{c} = \frac{kg.m^2}{A^2.s^4}$	$ \frac{K}{W.s} = \frac{K}{J} = $	$\frac{kg}{m^4.s^2}$?	$\frac{A}{Wb} = \frac{1}{H} = \frac{s^2 \cdot A^2}{m^2 \cdot kg}$
				$\frac{s^2K}{kg.m^2}$			
Impulse	$N.s = \frac{kg.m}{s}$	$N.m.s = \frac{kg.m^2}{s}$	$Wb = V.s = \frac{kg.m^2}{A.s^2}$	K.s	$Pa.s = \frac{kg}{m.s}$?	?

$$PushStoredEnergy = \frac{1}{2}PushStorage \times Static^2 = \frac{1}{2}\frac{Push^2}{PushStorage}$$

$$\tag{1}$$

$$MotionStoredEnergy = \frac{1}{2}MotionStorage \times Motion^2 = \frac{1}{2}Motion \times Impluse$$
(above not valid for thermal?) (2)

$$DissipatedPower = Push \times Motion = Dissipation \times Motion^{2} = \frac{Push^{2}}{Dissipation} = Heat$$

$$(3)$$

$$PushTimeConstant = Dissipation \div PushStorage \tag{4}$$

$$MotionTimeConstant = MotionStorage \div Dissipation$$
 (5)